Towards a Realistic Model of Interference in the ns-2 Network Simulator

Jörg Widmer, Ruben Merz, Jean-Yves Le Boudec / EPFL

Motivation: CDMA and UWB Simulations in ns-2

- **ns-2 Mobile Node**

Shortcomings of the Original PHY/MAC

- PHY checks for receive power > receive threshold hands *all* such packets immediately to the MAC → deterministic decision at the beginning of a packet
- MAC keeps state RX/TX/COLLISION/IDLE self-schedules eventual packet reception checks for collisions during reception

This model is used in *all* ns-2 simulations but:

No proper separation of PHY and MAC (designed specifically for IEEE 802.11), no notion of bandwidth (just center frequency), no modulation, no probability of error (0/1 decision), interference not additive, duration of interference neglected, no interference from packets below the capture threshold, ...

Implementation

- no perceptible overhead in simulation with 100 nodes (100 x 100 m²) and AODV compared to old PHY/MAC
- complete reimplementation of PHY and Modulation, minor changes to existing MAC protocols
- to be released toward the end of this year (contact: joerg.widmer,ruben.merz@epfl.ch)

Future Work

The above modifications form the basis for simulation of, for example, CDMA or UWB. Now we need to add concrete models to ns-2.

- new MAC protocols (research on UWB MAC)
- models for multi-user interference in CDMA / UWB
- code distribution (for concurrent transmissions)
- synchronization of sender and receiver
- coding and forward error correction
- (fix routing protocols for reasonable performance with bit errors and fading)

Simulation Example

- PHY capacity 2 MBit/s
- random topology (16 nodes, 600 x 600 m²)
- radio range ≈ 250 m
- AODV ad-hoc routing protocol
- each source sends packets of 250 bytes every 10 ms (200 KBit/s)

Modified PHY/MAC

Separation of PHY and MAC to be able to exchange these modules independently from each other.

Physical Layer:

- interference handling moved from MAC to PHY
- list of all ongoing packet transmissions allows to calculate a bit error rate based on the actual interference at the receiver
- PHY keeps RX/TX/COLLISION/IDLE state (simply mirrored by MAC)
- bit error probability based on average interference
- current modulation BPSK: $BER = \frac{1}{2} \text{erfc} \left(\frac{F}{\sqrt{2(1+N)}} \right)$

Throughput (KBit/s)

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Throughput (KBit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>250</td>
</tr>
<tr>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>25</td>
<td>350</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
</tr>
</tbody>
</table>

Original PHY with IEEE 802.11: collision induced route flap, RTS/CTS, sharing of capacity at nodes 0 and 6

Modified PHY with Aloha: interference from node 6 results in high bit error rate and temporary loss of route at node 0

Fading:

- included Ricean fading from http://www.ece.cmu.edu/wireless
- new UWB propagation model from Ghassemzadeh/Tarokh

MAC Layer:

- basic MAC works without modifications
- some modifications to 802.11 to make it work with the new PHY

Review 031015

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

The national Centres of Competence in Research are managed by the Swiss National Science Foundation on behalf of the Federal Authorities

NCCR MICS

IP 4

Swiss National Science Foundation

ETH Zürich

University of St. Gallen

EPFL

NCCR MICS

review 031015