Local-Knowledge Algorithms for Structured Message Diffusion in Unreliable Environments

M. Allani¹, B. Garbinato¹, F. Pedone², R. Schmidt²,³, M. Stamenković²

¹ - Université de Lausanne
² - University of Lugano
³ - Ecole Polytechnique Fédérale de Lausanne
Motivation

- Reliable information dissemination in large-scale systems - how hard can it be?
 - No precise a priori information about the system characteristics
 - Systems’ dynamic nature
Model and Basic Definitions

- Wired large-scale networks
- Crash-recovery processes
- Adaptive algorithms
 - Better performance than traditional gossip
 - Take system’s configuration into account
 - Process crash probabilities
 - Link failure probabilities
Adaptive Algorithm

- Modular solution
- Graph-Discovery Algorithm (GDA)
 - Let us first learn about the system
 - What is the topology and system’s reliability aspects
- Global-/Local-Knowledge Algorithms (GKA/LKA)
 - Propagation scheme based on GDA
 - Lazy versus Eager LKA
Maximum Reliability Tree - MRT

- Spanning tree containing the most reliable paths connecting all processes in the network

- Global-Knowledge Algorithm
 - Broadcaster builds an MRT
 - Messages are assigned according to link reliabilities
 - Processes follow this scheme
Optimization problem

- Assigning messages to links in such a way to
 - achieve the maximum probability to reach all processes
 - having a constrained number of messages each process can send

\[
\text{maximize } \quad r(T_s, m_s) = \prod_{i=1}^{n_T-1} \left(1 - \chi_i^{m_s[i]}\right)
\]

\[\text{subject to } \quad \forall p_i \in T_s : \quad c_i(m_s) = \sum_{p_j \in Ch(i)} m_s[j] = \alpha \cdot |Ch(i)|\]
Local-Knowledge Algorithms

- Processes rely on limited knowledge
- Some processes recalculate MRT and message assignments
- Two Approaches
 - Lazy LKA
 - Processes at the border of the broadcaster’s knowledge recalculate
 - No right to change a parent’s decision
 - Eager LKA
 - Intermediate processes recalculate
- Tradeoff
 - Computation versus accuracy
Lazy LKA
Lazy LKA

Diagram with nodes labeled p_1 to p_8 and edges with weights such as 0.05, 0.30, 0.33, 0.25, 0.16, 0.04, 0.15, 0.10, 0.20, 0.22, and 0.13.
Local-Knowledge Algorithms

- Curious about the Eager Approach?
 - Come to the poster session
Thank you